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Balance Beam  

Basics 

The balance beam is a test of motor coordination [1-4].  It is also a useful assay for sedation [5] 

and joint pathology [6].  Several beams are available.  In general the round beams are harder 

than the square beams and the thinner the beam the harder the test. Choice of difficulty, as 

always, depends on empirical determination of control behavior for a given species, age, strain, 

sex etc. 

This test can be more sensitive than rotarod for some types of motor coordination deficits [7-9]. 

Overview 

The animals are first pre-trained across a plank.  This helps to make sure that the behavior during 

testing is more stable and more accurately reflects motor coordination as opposed to the rodent’s 

natural aversion to crossing over unprotected spaces. After the pre-training, the animals can be 

tested on the balance beam 

for the latency to cross the 

beam and the number of 

slips. 

 

Procedure 

Pre-training 
Subject should be exposed to treats in the home cage (coco crispies for example, or other 

palatable food) for 2-5 days before pre-training to reduce neophobia.  For mice 3 in wide plank is 

placed across the an open space (large storage tubs are suitable, and should be lined with foam 

or other cushioning to ensure that the animals do not injure themselves if they fall). The start side 



should be very brightly lit and the end side should be dark, and ends in a hide in which the treats 

are placed.  The animals should be allowed to cross the beam, with gentle guiding or prodding as 

needed, until they cross readily.  This usually takes 1-4 trials.   

Testing 

The specific beam should be place across the time with the lights and hide as before.  Number of 

slips and latency to cross are scored.  You should be facing the back of the animal – primarily 

only the back paws slip.  This can not be scored correctly when viewed from the side. 

Variations 

In some cases, the animals will never consistently cross the beam from one side to the other.  In 

this case, the beam can be divided into segments, and the number of slips and time can be 

scored to cross a certain number of segments.   

Note 

It is almost impossible to film this consistently.  It is impossible to film and score with any 

accuracy.  Your only data are what you record manually. 
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